Plotting and interactive application
Plotting and interaction functionality comes from InteractiveDynamics
, another package of JuliaDynamics, which uses Makie.jl.
Plotting, and the interactive application of Agents.jl, are model-agnostic and simple to use. Defining simple functions that map agents to colors, and shapes, is the only thing you need to do. If you have already defined an ABM and functions for stepping the model, you typically need to write only an extra couple of lines of code to get your visualizations going.
You need to install both InteractiveDynamics
, as well as a plotting backend (we recommend GLMakie
) to use the following functions.
The version of InteractiveDynamics
used in the docs is:
using Pkg
Pkg.status("InteractiveDynamics")
Some parts of Agents.jl cannot be plotted yet in Makie.jl, and therefore alternatives are provided. However in the near future we hope to have moved everything to plotting with Makie.jl and not necessitate usage of Plots.jl or other libraries.
Plotting
The following functions allow you to plot an ABM, animate it via play/pause buttons, or directly export the time evolution into a video. At the moment these functions support 2D continuous and discrete space.
InteractiveDynamics.abm_plot
— Functionabm_plot(model::ABM; kwargs...) → fig, abmstepper
Plot an agent based model by plotting each individual agent as a marker and using the agent's position field as its location on the plot. Requires Agents
.
Return the overarching fig
object, as well as a struct abmstepper
that can be used to interactively animate the evolution of the ABM and combine it with other subplots. The figure is not displayed by default, you need to either return fig
as a last statement in your functions or simply call display(fig)
. Notice that models with DiscreteSpace
are plotted starting from 0 to n, with n the space size along each dimension.
To progress the ABM plot n
steps simply do:
Agents.step!(abmstepper, model, agent_step!, model_step!, n)
You can still call this function with n=0
to update the plot for a new model
, without doing any stepping. From fig
you can obtain the plotted axis (to e.g. turn off ticks, etc.) using ax = content(fig[1, 1])
. See Sugarscape for an example of using abmstepper
to make an animation of evolving the ABM and a heatmap in parallel with only a few lines of code.
Agent related keywords
ac, as, am
: These three keywords decided the color, size, and marker, that each agent will be plotted as. They can each be either a constant or a function, which takes as an input a single argument and ouputs the corresponding value. For example:
Notice that# ac = "#338c54" ac(a) = a.status == :S ? "#2b2b33" : a.status == :I ? "#bf2642" : "#338c54" # as = 10 as(a) = 10*randn() + 1 # am = :diamond am(a) = a.status == :S ? :circle : a.status == :I ? :diamond : :rect
am
can be/return aPolygon
instance, which plots each agent as an arbitrary polygon. It is assumed that the origin (0, 0) is the agent's position when creating the polygon. In this case, the keywordas
is meaningless, as each polygon has its own size. Use the functionsscale, rotate2D
to transform this polygon.scheduler = model.scheduler
: decides the plotting order of agents (which matters only if there is overlap).offset = nothing
: If notnothing
, it must be a function taking as an input an agent and outputting an offset position vector to be added to the agent's position (which matters only if there is overlap).scatterkwargs = ()
: Additional keyword arguments propagated to the scatter plot. Ifam
is/returns Polygons, then these arguments are propagated to apoly
plot.
Model and figure related keywords
heatarray = nothing
: A keyword that plots a heatmap over the space. Its values can be standard data accessors given to functions likerun!
, i.e. either a symbol (directly obtain model property) or a function of the model. The returned data must be a matrix of the same size as the underlying space. For exampleheatarray = :temperature
is used in the Daisyworld example. But you could also definef(model) = create_some_matrix_from_model...
and setheatarray = f
. The heatmap will be updated automatically during model evolution in videos and interactive applications.heatkwargs = (colormap=:tokyo,)
: Keyowrds given toMakie.heatmap
function ifheatarray
is not nothing.aspect = DataAspect()
: The aspect ratio behavior of the axis.resolution = (600, 600)
: Resolution of the figugre.static_preplot!
: A functionf(ax, model)
that plots something after the heatmap but before the agents. Notice that you can still make objects of this plot be visible above the agents using a translation in the third dimension like below:function static_preplot!(ax, model) obj = CairoMakie.scatter!([50 50]; color = :red) # Show position of teacher CairoMakie.hidedecorations!(ax) # hide tick labels etc. CairoMakie.translate!(obj, 0, 0, 5) # be sure that the teacher will be above students end
InteractiveDynamics.abm_play
— Functionabm_play(model, agent_step!, model_step!; kwargs...) → fig, abmstepper
Launch an interactive application that plots an agent based model and can animate its evolution in real time. Requires Agents
.
The agents are plotted exactly like in abm_plot
, while the two functions agent_step!, model_step!
decide how the model will evolve, as in the standard approach of Agents.jl and its step!
function.
The application has two buttons: "run" and "reset" which starts/stops the time evolution and resets the model to its original configuration. Two sliders control the animation speed: "spu" decides how many model steps should be done before the plot is updated, and "sleep" the sleep()
time between updates.
Keywords
ac, am, as, scheduler, offset, aspect, scatterkwargs
: propagated toabm_plot
.spu = 1:100
: The values of the "spu" slider.
InteractiveDynamics.abm_video
— Functionabm_video(file, model, agent_step! [, model_step!]; kwargs...)
This function exports the animated time evolution of an agent based model into a video saved at given path file
, by recording the behavior of abm_play
(without sliders). The plotting is identical as in abm_plot
.
Keywords
spf = 1
: Steps-per-frame, i.e. how many times to step the model before recording a new frame.framerate = 30
: The frame rate of the exported video.frames = 300
: How many frames to record in total, including the starting frame.resolution = (600, 600)
: Resolution of the fig.axiskwargs = NamedTuple()
: Keyword arguments given to the main axis creation for e.g. settingxticksvisible = false
.kwargs...
: All other keywords are propagated toabm_plot
.
Interactive application
InteractiveDynamics.abm_data_exploration
— Functionabm_data_exploration(model::ABM, agent_step!, model_step!, params=Dict(); kwargs...)
Open an interactive application for exploring an agent based model and the impact of changing parameters on the time evolution. Requires Agents
.
The application evolves an ABM interactively and plots its evolution, while allowing changing any of the model parameters interactively and also showing the evolution of collected data over time (if any are asked for, see below). The agent based model is plotted and animated exactly as in abm_play
, and the arguments model, agent_step!, model_step!
are propagated there as-is.
Calling abm_data_exploration
returns: figure, agent_df, model_df
. So you can save the figure, but you can also access the collected data (if any).
Interaction
Besides the basic time evolution interaction of abm_play
, additional functionality here allows changing model parameters in real time, based on the provided fourth argument params
. This is a dictionary which decides which parameters of the model will be configurable from the interactive application. Each entry of params
is a pair of Symbol
to an AbstractVector
, and provides a range of possible values for the parameter named after the given symbol (see example online). Changing a value in the parameter slides is only updated into the actual model when pressing the "update" button.
The "reset" button resets the model to its original agent and space state but it updates it to the currently selected parameter values. A red vertical line is displayed in the data plots when resetting, for visual guidance.
Keywords
ac, am, as, scheduler, offset, aspect, scatterkwargs
: propagated toabm_plot
.adata, mdata
: Same as the keyword arguments ofAgents.run!
, and decide which data of the model/agents will be collected and plotted below the interactive plot. Notice that data collection can only occur on plotted steps (and thus steps not plotted due to "spu" are also not data-collected).alabels, mlabels
: If data are collected from agents or the model withadata, mdata
, the corresponding plots have a y-label named after the collected data. Instead, you can givealabels, mlabels
(vectors of strings with exactly same length asadata, mdata
), and these labels will be used instead.when = true
: When to perform data collection, as inAgents.run!
.spu = 1:100
: Values that the "spu" slider will obtain.
Here is an example application made with InteractiveDynamics.abm_data_exploration
from the Daisyworld example.
Graph plotting
To plot agents existing of a GraphSpace
we can't use InteractiveDynamics
because Makie.jl does not support plotting on graphs (yet). We provide the following function in this case, which comes into scope when using Plots
. See also the SIR model for the spread of COVID-19 example for an application.
Agents.abm_plot_on_graph
— Functionabm_plot_on_graph(model::ABM{<: GraphSpace}; ac, as, am, kwargs...)
This function plots an ABM with a GraphSpace
. It functions similarly with [abm_plot
], but is based on Plots.jl (specifically GraphRecipes.jl).
The three key functions ac, as, am
do not get an agent as an input but a vector of agents at each node of the graph. Their output is the same: the color, size, and marker type of the node.
Here as
defaults to length
. Internally, the graphplot
recipe is used, and all other kwargs...
are propagated there.
Open Street Map plotting
Plotting an open street map is also not possible with Makie.jl at the moment, but there is a Julia package that does this kind of plotting, OpenStreetMapXPlots.jl. Its usage is demonstrated in the Zombie Outbreak example page.
Plots.jl Recipes
Whilst the primary method for plotting agents models is through InteractiveDynamics
, the following Plots recipes can also be used if you prefer the Plots.jl ecosystem.
Notice that these methods will emit a warning. Pass warn = false
to suppress it.
Agents.plotabm
— Functionplotabm(model::ABM{<: ContinuousSpace}; ac, as, am, kwargs...)
plotabm(model::ABM{<: DiscreteSpace}; ac, as, am, kwargs...)
Plot the model
as a scatter
-plot, by configuring the agent color, size and marker (shape) via the keywords ac, as, am
. These keywords can be constants, or they can be functions, each accepting an agent and outputting a valid value for color/size/marker.
The keyword scheduler = model.scheduler
decides the plotting order of agents (which matters only if there is overlap).
The keyword offset
is a function with argument offest(a::Agent)
. It targets scenarios where multiple agents existin within a grid cell as it adds an offset (same type as agent.pos
) to the plotted agent position.
All other keywords are propagated into Plots.scatter
and the plot is returned.
plotabm(model::ABM{<: GraphSpace}; ac, as, am, kwargs...)
This function is the same as plotabm
for ContinuousSpace
, but here the three key functions ac, as, am
do not get an agent as an input but a vector of agents at each node of the graph. Their output is the same.
Here as
defaults to length
. Internally, the graphplot
recipe is used, and all other kwargs...
are propagated there.
Agents.plotabm!
— Functionplotabm!(model)
plotabm!(plt, model)
Functionally the same as plotabm
, however this method appends to the active plot, or one identified as plt
.