Tutorial

YouTube video
  • This Tutorial is also available as a YouTube video: https://youtu.be/fgwAfAa4kt0

In Agents.jl a central structure called AgentBasedModel contains all data of a simulation and maps unique IDs (integers) to agent instances. During the simulation, the model evolves in discrete steps. During one step, the user decides which agents will act, how will they act, how many times, and whether any model-level properties will be adjusted. Once the time evolution is defined, collecting data during time evolution is straightforward by simply stating which data should be collected.

In the spirit of simple design, all of this is done by defining simple Julia data types, like basic functions, structs and dictionaries.

To set up an ABM simulation in Agents.jl, a user only needs to follow these steps:

  1. Choose in what kind of space the agents will live in, for example a graph, a grid, etc. Several spaces are provided by Agents.jl and can be initialized immediately.
  2. Define the agent type (or types, for mixed models) that will populate the ABM. Agent types are standard Julia mutable structs. They can be created manually, but typically you'd want to use @agent. The types must contain some mandatory fields, which is ensured by using @agent. The remaining fields of the agent type are up to user's choice.
  3. The created agent type, the chosen space, optional additional model level properties, and other simulation tuning properties like schedulers or random number generators, are given to AgentBasedModel. This instance defines the model within an Agents.jl simulation. More specialized structures are also available, see AgentBasedModel.
  4. Provide functions that govern the time evolution of the ABM. A user can provide an agent-stepping function, that acts on each agent one by one, and/or a model-stepping function, that steps the entire model as a whole. These functions are standard Julia functions that take advantage of the Agents.jl API. Once these functions are created, they are simply passed to step! to evolve the model.
  5. (Optional) Visualize the model and animate its time evolution. This can help checking that the model behaves as expected and there aren't any mistakes, or can be used in making figures for a paper/presentation.
  6. Collect data. To do this, specify which data should be collected, by providing one standard Julia Vector of data-to-collect for agents, for example [:mood, :wealth], and another one for the model. The agent data names are given as the keyword adata and the model as keyword mdata to the function run!. This function outputs collected data in the form of a DataFrame.

If you're planning of running massive simulations, it might be worth having a look at the Performance Tips after familiarizing yourself with Agents.jl.

1. The space

Agents.jl offers several possibilities for the space the agents live in. In addition, it is straightforward to implement a fundamentally new type of space, see Creating a new space type.

The available spaces are listed in the Available spaces part of the API. An example of a space is OpenStreetMapSpace. It is based on Open Street Map, where agents are confined to move along streets of the map, using real-world values for the length of each street.

After deciding on the space, one simply initializes an instance of a space, e.g. with grid = GridSpace((10, 10)) and passes that into AgentBasedModel. See each individual space for all its possible arguments.

2. The agent type(s)

Agents.@agentMacro
@agent YourAgentType{X} AnotherAgentType [OptionalSupertype] begin
    extra_property::X
    other_extra_property::Int
    # etc...
end

Define an agent struct which includes all fields that AnotherAgentType has, as well as any additional ones the user may provide via the begin block. See below for examples.

Using @agent is the recommended way to create agent types for Agents.jl, however keep in mind that the macro (currently) doesn't work with Base.@kwdef or const declarations in individual fields (for Julia v1.8+).

Structs created with @agent by default subtype AbstractAgent. They cannot subtype each other, as all structs created from @agent are concrete types and AnotherAgentType itself is also concrete (only concrete types have fields). If you want YourAgentType to subtype something other than AbstractAgent, use the optional argument OptionalSupertype (which itself must then subtype AbstractAgent).

Usage

The macro @agent has two primary uses:

  1. To include the mandatory fields for a particular space in your agent struct. In this case you would use one of the minimal agent types as AnotherAgentType.
  2. A convenient way to include fields from another, already existing struct.

The existing minimal agent types are:

All will attribute an id::Int field, and besides NoSpaceAgent will also attribute a pos field. You should never directly manipulate the mandatory fields id, pos that the resulting new agent type will have. The id is an unchangeable field. Use functions like move_agent! etc., to change the position.

Examples

Example without optional hierarchy

Using

@agent Person{T} GridAgent{2} begin
    age::Int
    moneyz::T
end

will create an agent appropriate for using with 2-dimensional GridSpace

mutable struct Person{T} <: AbstractAgent
    id::Int
    pos::NTuple{2, Int}
    age::Int
    moneyz::T
end

and then, one can even do

@agent Baker{T} Person{T} begin
    breadz_per_day::T
end

which would make

mutable struct Baker{T} <: AbstractAgent
    id::Int
    pos::NTuple{2, Int}
    age::Int
    moneyz::T
    breadz_per_day::T
end

Example with optional hierarchy

An alternative way to make the above structs, that also establishes a user-specific subtyping hierarchy would be to do:

abstract type AbstractHuman <: AbstractAgent end

@agent Worker GridAgent{2} AbstractHuman begin
    age::Int
    moneyz::Float64
end

@agent Fisher Worker AbstractHuman begin
    fish_per_day::Float64
end

which would now make both Fisher and Worker subtypes of AbstractHuman.

julia> supertypes(Fisher)
(Fisher, AbstractHuman, AbstractAgent, Any)

julia> supertypes(Worker)
(Worker, AbstractHuman, AbstractAgent, Any)

Note that Fisher will not be a subtype of Worker although Fisher has inherited the fields from Worker.

Example highlighting problems with parametric types

Notice that in Julia parametric types are union types. Hence, the following cannot be used:

@agent Dummy{T} GridAgent{2} begin
    moneyz::T
end

@agent Fisherino{T} Dummy{T} begin
    fish_per_day::T
end

You will get an error in the definition of Fisherino, because the fields of Dummy{T} cannot be obtained, because it is a union type. Same with using Dummy. You can only use Dummy{Float64}.

Example with common dispatch and no subtyping

It may be that you do not even need to create a subtyping relation if you want to utilize multiple dispatch. Consider the example:

@agent CommonTraits GridSpace{2} begin
    age::Int
    speed::Int
    energy::Int
end

and then two more structs are made from these traits:

@agent Bird CommonTraits begin
    height::Float64
end

@agent Rabbit CommonTraits begin
    underground::Bool
end

If you wanted a function that dispatches to both Rabbit, Bird, you only have to define:

Animal = Union{Bird, Rabbit}
f(x::Animal) = ... # uses `CommonTraits` fields

However, it should also be said, that there is no real reason here to explicitly type-annotate x::Animal in f. Don't annotate any type. Annotating a type only becomes useful if there are at least two "abstract" groups, like Animal, Person. Then it would make sense to define

Person = Union{Fisher, Baker}
f(x::Animal) = ... # uses `CommonTraits` fields
f(x::Person) = ... # uses fields that all "persons" have
source
Agents.AbstractAgentType
YourAgentType <: AbstractAgent

Agents participating in Agents.jl simulations are instances of user-defined Types that are subtypes of AbstractAgent.

Your agent type(s) must have the id::Int field as first field. If any space is used (see Available spaces), a pos field of appropriate type is also mandatory. The core model structure, and each space, may also require additional fields that may, or may not, be communicated as part of the public API.

The @agent macro ensures that all of these constrains are in place and hence it is the recommended way to generate new agent types.

source

3. The model

Once an agent is created (typically by instantiating a struct generated with @agent), it can be added to a model using add_agent!. Then, the agent can interact with the model and the space further by using e.g. move_agent! or kill_agent!. The "model" here stands for an instance of AgentBasedModel.

Agents.AgentBasedModelType
AgentBasedModel

An AgentBasedModel is the supertype encompassing models in Agents.jl. All models are some concrete implementation of AgentBasedModel and follow its interface (see below). ABM is an alias to AgentBasedModel.

A model is typically constructed with:

AgentBasedModel(AgentType [, space]; properties, kwargs...) → model

which creates a model expecting agents of type AgentType living in the given space. AgentBasedModel(...) defaults to StandardABM, which stores agents in a dictionary that maps unique IDs (integers) to agents. See also UnremovableABM for better performance in case number of agents can only increase during the model evolution.

Agents.jl supports multiple agent types by passing a Union of agent types as AgentType. However, please have a look at Performance Tips for potential drawbacks of this approach.

space is a subtype of AbstractSpace, see Space for all available spaces. If it is omitted then all agents are virtually in one position and there is no spatial structure. Spaces are mutable objects and are not designed to be shared between models. Create a fresh instance of a space with the same properties if you need to do this.

Keywords

  • properties = nothing: additional model-level properties that the user may decide upon and include in the model. properties can be an arbitrary container of data, however it is most typically a Dict with Symbol keys, or a composite type (struct).
  • scheduler = Schedulers.fastest: is the scheduler that decides the (default) activation order of the agents. See the scheduler API for more options.
  • rng = Random.default_rng(): the random number generation stored and used by the model in all calls to random functions. Accepts any subtype of AbstractRNG.
  • warn=true: some type tests for AgentType are done, and by default warnings are thrown when appropriate.

Interface of AgentBasedModel

Here we the most important information on how to query an instance of AgentBasedModel:

  • model[id] gives the agent with given id.
  • abmproperties(model) gives the properies container stored in the model.
  • model.property: If the model properties is a dictionary with key type Symbol, or if it is a composite type (struct), then the syntax model.property will return the model property with key :property.
  • abmrng(model) will return the random number generator of the model. It is strongly recommended to use abmrng(model) to all calls to rand and similar functions, so that reproducibility can be established in your modelling workflow.
  • abmscheduler(model) will return the default scheduler of the model.

Many more functions exist in the API page, such as allagents.

source

4. Evolving the model

In Agents.jl, an agent based model should be accompanied with least one and at most two stepping functions. An agent step function is required by default. Such an agent step function defines what happens to an agent when it activates. Sometimes we also need a function that changes all agents at once, or changes a model property. In such cases, we can also provide a model step function.

An agent step function must accept two arguments: first, an agent instance, and second, a model instance.

The model step function must accept one argument, that is the model. To use only a model step function, users can use the built-in dummystep as the agent step function. This is typically the case for Advanced stepping.

The stepping functions are created using the API functions, and the Examples hosted in this documentation showcase several different variants.

After you have defined the stepping functions functions, you can evolve your model with step!:

CommonSolve.step!Function
step!(model::ABM, agent_step!, n::Int = 1)
step!(model::ABM, agent_step!, model_step!, n::Int = 1, agents_first::Bool = true)

Update agents n steps according to the stepping function agent_step!. Agents will be activated as specified by the model.scheduler. model_step! is triggered after every scheduled agent has acted, unless the argument agents_first is false (which then first calls model_step! and then activates the agents).

step! ignores scheduled IDs that do not exist within the model, allowing you to safely remove agents dynamically.

step!(model, agent_step!, model_step!, n::Function, agents_first::Bool = true)

In this version n is a function. Then step! runs the model until n(model, s) returns true, where s is the current amount of steps taken, starting from 0. For this method of step!, model_step! must be provided always (use dummystep if you have no model stepping dynamics).

See also Advanced stepping for stepping complex models where agent_step! might not be convenient.

source
Agents.dummystepFunction
dummystep(model)

Use instead of model_step! in step! if no function is useful to be defined.

source
dummystep(agent, model)

Use instead of agent_step! in step! if no function is useful to be defined.

source

Advanced stepping

Current step number

Notice that the current step number is not explicitly given to the model_step! function, because this is useful only for a subset of ABMs. If you need the step information, implement this by adding a counting parameter into the model properties, and incrementing it by 1 each time model_step! is called. An example can be seen in the model_step! function of Daisyworld, where a tick is increased at each step.

The interface of step!, which allows the option of both agent_step! and model_step! is driven mostly by convenience. In principle, the model_step! function by itself can perform all operations related with stepping the ABM. However, for many models, this simplified approach offers the benefit of not having to write an explicit loop over existing agents inside the model_step!. Most of the examples in our documentation can be expressed using an independent agent_step! and model_step! function.

On the other hand, more advanced models require special handling for scheduling, or may need to schedule several times and act on different subsets of agents with different functions. In such a scenario, it is more sensible to provide only a model_step! function (and use dummystep as agent_step!), where all configuration is contained within. Notice that if you follow this road, the argument scheduler given to AgentBasedModel somewhat loses its meaning.

Here is an example:

function complex_step!(model)
    for id in scheduler1(model)
        agent_step1!(model[id], model)
    end
    intermediate_model_action!(model)
    for id in scheduler2(model)
        agent_step2!(model[id], model)
    end
    if model.step_counter % 100 == 0
        model_action_every_100_steps!(model)
    end
    final_model_action!(model)
end

step!(model, dummystep, complex_step!, n)

For defining your own schedulers, see Schedulers.

5. Visualizations

Once you have defined a model and the stepping functions you can visualize the model statically or animate its time evolution straightforwardly in ~5 lines of code. This is discussed in a different page: Visualizations and Animations for Agent Based Models. Furthermore, all models in the Examples showcase plotting.

6. Collecting data

Running the model and collecting data while the model runs is done with the run! function. Besides run!, there is also the paramscan function that performs data collection while scanning ranges of the parameters of the model, and the ensemblerun! that performs ensemble simulations and data collection.

Agents.run!Function
run!(model, agent_step! [, model_step!], n::Integer; kwargs...) → agent_df, model_df
run!(model, agent_step!, model_step!, n::Function; kwargs...) → agent_df, model_df

Run the model (step it with the input arguments propagated into step!) and collect data specified by the keywords, explained one by one below. Return the data as two DataFrames, one for agent-level data and one for model-level data.

See also offline_run! to write data to file while running the model.

Data-deciding keywords

  • adata::Vector means "agent data to collect". If an entry is a Symbol, e.g. :weight, then the data for this entry is agent's field weight. If an entry is a Function, e.g. f, then the data for this entry is just f(a) for each agent a. The resulting dataframe columns are named with the input symbol (here :weight, :f).

  • adata::Vector{<:Tuple}: if adata is a vector of tuples instead, data aggregation is done over the agent properties.

    For each 2-tuple, the first entry is the "key" (any entry like the ones mentioned above, e.g. :weight, f). The second entry is an aggregating function that aggregates the key, e.g. mean, maximum. So, continuing from the above example, we would have adata = [(:weight, mean), (f, maximum)].

    It's also possible to provide a 3-tuple, with the third entry being a conditional function (returning a Bool), which assesses if each agent should be included in the aggregate. For example: x_pos(a) = a.pos[1]>5 with (:weight, mean, x_pos) will result in the average weight of agents conditional on their x-position being greater than 5.

    The resulting data name columns use the function dataname. They create something like :mean_weight or :maximum_f_x_pos. In addition, you can use anonymous functions in a list comprehension to assign elements of an array into different columns: adata = [(a)->(a.interesting_array[i]) for i=1:N]. Column names can also be renamed with DataFrames.rename! after data is collected.

    Notice: Aggregating only works if there are agents to be aggregated over. If you remove agents during model run, you should modify the aggregating functions. E.g. instead of passing mean, pass mymean(a) = isempty(a) ? 0.0 : mean(a).

  • mdata::Vector means "model data to collect" and works exactly like adata. For the model, no aggregation is possible (nothing to aggregate over).

    Alternatively, mdata can also be a function. This is a "generator" function, that accepts model as input and provides a Vector that represents mdata. Useful in combination with an ensemblerun! call that requires a generator function.

By default both keywords are nothing, i.e. nothing is collected/aggregated.

Mixed-Models

For mixed-models, the adata keyword has some additional options & properties. An additional column agent_type will be placed in the output dataframe.

In the case that data is needed for one agent type that does not exist in a second agent type, missing values will be added to the dataframe.

Warning: Since this option is inherently type unstable, try to avoid this in a performance critical situation.

Aggregate functions will fail if missing values are not handled explicitly. If a1.weight but a2 (type: Agent2) has no weight, use a2(a) = a isa Agent2; adata = [(:weight, sum, a2)] to filter out the missing results.

Other keywords

  • when=true : at which steps s to perform the data collection and processing. A lot of flexibility is offered based on the type of when. If when::AbstractVector, then data are collected if s ∈ when. Otherwise data are collected if when(model, s) returns true. By default data are collected in every step.
  • when_model = when : same as when but for model data.
  • obtainer = identity : method to transfer collected data to the DataFrame. Typically only change this to copy if some data are mutable containers (e.g. Vector) which change during evolution, or deepcopy if some data are nested mutable containers. Both of these options have performance penalties.
  • agents_first=true : Whether to update agents first and then the model, or vice versa.
  • showprogress=false : Whether to show progress
source

The run! function has been designed for maximum flexibility: nearly all scenarios of data collection are possible whether you need agent data, model data, aggregated data, or arbitrary combinations.

Nevertheless, we also expose a simple data-collection API (see Data collection), that gives users even more flexibility, allowing them to make their own "data collection loops" arbitrarily calling step! and collecting data as, and when, needed.

As your models become more complex, it may not be advantageous to use lots of helper functions in the global scope to assist with data collection. If this is the case in your model, here's a helpful tip to keep things clean: use a generator function to collect data as instructed in the documentation string of run!. For example:

function assets(model)
    total_savings(model) = model.bank_balance + sum(model.assets)
    function stategy(model)
        if model.year == 0
            return model.initial_strategy
        else
            return get_strategy(model)
        end
    end
    return [:age, :details, total_savings, strategy]
end
run!(model, agent_step!, model_step!, 10; mdata = assets)

Seeding and Random numbers

Each model created by AgentBasedModel provides a random number generator pool model.rng which by default coincides with the global RNG. For performance and reproducibility reasons, one should never use rand() without using a pool, thus throughout our examples we use rand(model.rng) or rand(model.rng, 1:10, 100), etc.

Another benefit of this approach is deterministic models that can be run again and yield the same output. To do this, always pass a specifically seeded RNG to the model creation, e.g. rng = Random.MersenneTwister(1234).

Passing RandomDevice() will use the system's entropy source (coupled with hardware like TrueRNG will invoke a true random source, rather than pseudo-random methods like MersenneTwister). Models using this method cannot be repeatable, but avoid potential biases of pseudo-randomness.

An educative example

A simple, education-oriented example of using the basic Agents.jl API is given in Schelling's segregation model.