Joint distance distribution tests
JointDistanceDistributionTest
#
CausalityTools.CausalityTests.JointDistanceDistributionTest
— Type.
JointDistanceDistributionTest(; distance_metric = SqEuclidean(), B::Int = 10,
D::Int = 2, τ::Int = 1)
The parameters for a joint distance distribution [1] analysis.
Optional keyword arguments
distance_metric
: The distance metric used to compute distances. Has to be a instance of a valid distance metric fromDistances.jl
. Defaults toSqEuclidean()
.B::Int
: The number of equidistant subintervals to divide the interval[0, 1]
into when comparing the normalised distances.D::Int
: The dimension of the delay reconstructions.τ::Int
: The delay of the delay reconstructions.
References
[1] Amigó, José M., and Yoshito Hirata. "Detecting directional couplings from multivariate flows by the joint distance distribution." Chaos: An Interdisciplinary Journal of Nonlinear Science 28.7 (2018): 075302.
JointDistanceDistributionTTest
#
CausalityTools.CausalityTests.JointDistanceDistributionTTest
— Type.
JointDistanceDistributionTTest(; distance_metric = SqEuclidean(), B::Int = 10,
D::Int = 2, τ::Int = 1,
hypothesis_test::OneSampleTTest = OneSampleTTest,
μ0 = 0.0)
The parameters for a joint distance distribution [1] analysis.
Optional keyword arguments
distance_metric
: The distance metric used to compute distances. Has to be a instance of a valid distance metric fromDistances.jl
. Defaults toSqEuclidean()
.B::Int
: The number of equidistant subintervals to divide the interval[0, 1]
into when comparing the normalised distances.D::Int
: The dimension of the delay reconstructions.τ::Int
: The delay of the delay reconstructions.μ0
: The hypothetical mean value of the joint distance distribution if there is no coupling betweenx
andy
(default isμ0 = 0.0
).hypothesis_test
: AOneSampleTTest
to test whether the joint distance distribution is skewed towards positive values.
References
[1] Amigó, José M., and Yoshito Hirata. "Detecting directional couplings from multivariate flows by the joint distance distribution." Chaos: An Interdisciplinary Journal of Nonlinear Science 28.7 (2018): 075302.