References
- Battelino, P. M.; Grebogi, C.; Ott, E.; Yorke, J. A. and Yorke, E. D. (1988). Multiple coexisting attractors, basin boundaries and basic sets. Physica D: Nonlinear Phenomena 32, 296–305.
- Datseris, G.; Rossi, K. L. and Wagemakers, A. (2023). Framework for global stability analysis of dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 33.
- Datseris, G. and Wagemakers, A. (2022). Effortless estimation of basins of attraction. Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 023104.
- Daza, A.; Wagemakers, A.; Georgeot, B.; Guéry-Odelin, D. and Sanjuán, M. A. (2016). Basin entropy: a new tool to analyze uncertainty in dynamical systems. Scientific Reports 6.
- Daza, A.; Wagemakers, A. and Sanjuán, M. A. (2018). Ascertaining when a basin is Wada: the merging method. Scientific Reports 8, 9954.
- Ester, M.; Kriegel, H.-P.; Sander, J. and Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96 (AAAI Press); pp. 226–231.
- Gelbrecht, M.; Kurths, J. and Hellmann, F. (2020). Monte Carlo basin bifurcation analysis. New Journal of Physics 22, 033032.
- Grebogi, C.; McDonald, S. W.; Ott, E. and Yorke, J. A. (1983). Final state sensitivity: An obstruction to predictability. Physics Letters A 99, 415–418.
- Halekotte, L. and Feudel, U. (2020). Minimal fatal shocks in multistable complex networks. Scientific Reports 10.
- Kaszás, B.; Feudel, U. and Tél, T. (2019). Tipping phenomena in typical dynamical systems subjected to parameter drift. Scientific Reports 9.
- Klinshov, V. V.; Nekorkin, V. I. and Kurths, J. (2015). Stability threshold approach for complex dynamical systems. New J. Phys. 18, 013004.
- Lucarini, V. and Bódai, T. (2017). Edge states in the climate system: exploring global instabilities and critical transitions. Nonlinearity 30, R32.
- Mehling, O.; Börner, R. and Lucarini, V. (2023). Limits to predictability of the asymptotic state of the Atlantic Meridional Overturning Circulation in a conceptual climate model, arXiv preprint arXiv:2308.16251.
- Menck, P. J.; Heitzig, J.; Marwan, N. and Kurths, J. (2013). How basin stability complements the linear-stability paradigm. Nature Physics 9, 89–92.
- Puy, A.; Daza, A.; Wagemakers, A. and Sanjuán, M. A. (2021). A test for fractal boundaries based on the basin entropy. Communications in Nonlinear Science and Numerical Simulation 95, 105588.
- Ritchie, P. D.; Alkhayuon, H.; Cox, P. M. and Wieczorek, S. (2023). Rate-induced tipping in natural and human systems. Earth System Dynamics 14, 669–683.
- Schneider, T. M.; Gibson, J. F.; Lagha, M.; De Lillo, F. and Eckhardt, B. (2008). Laminar-turbulent boundary in plane Couette flow. Physical Review E 78, 037301.
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H. P. and Xu, X. (2017). DBSCAN Revisited, Revisited. ACM Transactions on Database Systems 42, 1–21.
- Skufca, J. D.; Yorke, J. A. and Eckhardt, B. (2006). Edge of chaos in a parallel shear flow. Physical review letters 96, 174101.
- Stender, M. and Hoffmann, N. (2021), bSTAB: an open-source software for computing the basin stability of multi-stable dynamical systems. Nonlinear Dynamics 107, 1451–1468.
- Wagemakers, A.; Daza, A. and Sanjuán, M. A. (2020). The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation 84, 105167.