References
- Alizadeh, N. H. and Arghami, N. R. (2010). A new estimator of entropy. Journal of the Iranian Statistical Society (JIRSS).
- Amigó, J. M.; Balogh, S. G. and Hernández, S. (2018). A brief review of generalized entropies. Entropy 20, 813.
- Amigó, J. M.; Szczepański, J.; Wajnryb, E. and Sanchez-Vives, M. V. (2004). Estimating the Entropy Rate of Spike Trains via Lempel-Ziv Complexity. Neural Computation 16, 717–736, arXiv:https://direct.mit.edu/neco/article-pdf/16/4/717/815838/089976604322860677.pdf.
- Anteneodo, C. and Plastino, A. R. (1999). Maximum entropy approach to stretched exponential probability distributions. Journal of Physics A: Mathematical and General 32, 1089.
- Arora, A.; Meister, C. and Cotterell, R. (2022). Estimating the Entropy of Linguistic Distributions, arXiv, arXiv:2204.01469 [cs.CL].
- Azami, H. and Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine 128, 40–51.
- Azami, H.; Rostaghi, M.; Abásolo, D. and Escudero, J. (2017). Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals. IEEE Transactions on Biomedical Engineering 64, 2872–2879.
- Azami, H.; da Silva, L. E.; Omoto, A. C. and Humeau-Heurtier, A. (2019). Two-dimensional dispersion entropy: An information-theoretic method for irregularity analysis of images. Signal Processing: Image Communication 75, 178–187.
- Bandt, C. and Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 88, 174102.
- Bates, J. E. and Shepard, H. K. (1993). Measuring complexity using information fluctuation. Physics Letters A 172, 416–425.
- Berger, S.; Kravtsiv, A.; Schneider, G. and Jordan, D. (2019). Teaching Ordinal Patterns to a Computer: Efficient Encoding Algorithms Based on the Lehmer Code. Entropy 21.
- Charzyńska, A. and Gambin, A. (2016). Improvement of the k-nn Entropy Estimator with Applications in Systems Biology. Entropy 18.
- Costa, M.; Goldberger, A. L. and Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 89, 068102.
- Costa, M. D. and Goldberger, A. L. (2015). Generalized Multiscale Entropy Analysis: Application to Quantifying the Complex Volatility of Human Heartbeat Time Series. Entropy 17, 1197–1203.
- Curado, E. M. and Nobre, F. D. (2004). On the stability of analytic entropic forms. Physica A: Statistical Mechanics and its Applications 335, 94–106.
- Datseris, G. and Parlitz, U. (2022). Nonlinear dynamics: a concise introduction interlaced with code (Springer Nature).
- Diego, D.; Haaga, K. A. and Hannisdal, B. (2019). Transfer entropy computation using the Perron-Frobenius operator. Phys. Rev. E 99, 042212.
- Ebrahimi, N.; Pflughoeft, K. and Soofi, E. S. (1994). Two measures of sample entropy. Statistics & Probability Letters 20, 225–234.
- Fadlallah, B.; Chen, B.; Keil, A. and Prı́ncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911.
- Gao, S.; Ver Steeg, G. and Galstyan, A. (09–12 May 2015). Efficient Estimation of Mutual Information for Strongly Dependent Variables. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, Vol. 38 of Proceedings of Machine Learning Research, edited by Lebanon, G. and Vishwanathan, S. V. (PMLR, San Diego, California, USA); pp. 277–286.
- Goria, M. N.; Leonenko, N. N.; Mergel, V. V. and Inverardi, P. L. (2005). A new class of random vector entropy estimators and its applications in testing statistical hypotheses. Journal of Nonparametric Statistics 17, 277–297, arXiv:https://doi.org/10.1080/104852504200026815.
- Grassberger, P. (2022). On Generalized Schürmann Entropy Estimators. Entropy 24.
- Hausser, J. and Strimmer, K. (2009). Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. Journal of Machine Learning Research 10.
- James, W. and Stein, C. (1992). Estimation with quadratic loss. In: Breakthroughs in statistics: Foundations and basic theory (Springer); pp. 443–460.
- Kozachenko, L. F. and Leonenko, N. N. (1987). Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii 23, 9–16.
- Kraskov, A.; Stögbauer, H. and Grassberger, P. (2004). Estimating mutual information. Phys. Rev. E 69, 066138.
- Lad, F.; Sanfilippo, G. and Agrò, G. (2015). Extropy: Complementary Dual of Entropy. Statistical Science 30, 40–58.
- Lempel, A. and Ziv, J. (1976). On the Complexity of Finite Sequences. IEEE Transactions on Information Theory 22, 75–81.
- Leonenko, N.; Pronzato, L. and Savani, V. (2008). A class of Rényi information estimators for multidimensional densities. The Annals of Statistics 36, 2153–2182.
- Li, P.; Liu, C.; Li, K.; Zheng, D.; Liu, C. and Hou, Y. (2015). Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & biological engineering & computing 53, 77–87.
- Li, Y.; Gao, X. and Wang, L. (2019). Reverse Dispersion Entropy: A New Complexity Measure for Sensor Signal. Sensors 19.
- Liu, J. and Xiao, F. (2023). Renyi extropy. Communications in Statistics, Theory and Methods 52, 5836–5847.
- Llanos, F.; Alexander, J. M.; Stilp, C. E. and Kluender, K. R. (2017). Power spectral entropy as an information-theoretic correlate of manner of articulation in American English. The Journal of the Acoustical Society of America 141, EL127–EL133.
- Lord, W. M.; Sun, J. and Bollt, E. M. (2018). Geometric k-nearest neighbor estimation of entropy and mutual information. Chaos: An Interdisciplinary Journal of Nonlinear Science 28.
- Manis, G.; Aktaruzzaman, M. and Sassi, R. (2017). Bubble entropy: An entropy almost free of parameters. IEEE Transactions on Biomedical Engineering 64, 2711–2718.
- Miller, G. (1955). Note on the bias of information estimates. Information theory in psychology: Problems and methods.
- Paninski, L. (2003). Estimation of entropy and mutual information. Neural computation 15, 1191–1253.
- Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences 88, 2297–2301.
- Prichard, D. and Theiler, J. (1995). Generalized redundancies for time series analysis. Physica D: Nonlinear Phenomena 84, 476–493.
- Ribeiro, H. V.; Zunino, L.; Lenzi, E. K.; Santoro, P. A. and Mendes, R. S. (2012). Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns. PLOS ONE 7, 1–9.
- Richman, J. S. and Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American journal of physiology-heart and circulatory physiology 278, H2039–H2049.
- Rosso, O. A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M. and Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods 105, 65–75.
- Rosso, O. A.; Larrondo, H.; Martin, M. T.; Plastino, A. and Fuentes, M. A. (2007). Distinguishing noise from chaos. Physical review letters 99, 154102.
- Rosso, O. A.; Martín, M.; Larrondo, H. A.; Kowalski, A. and Plastino, A. (2013). Generalized statistical complexity: A new tool for dynamical systems. Concepts and recent advances in generalized information measures and statistics, 169–215.
- Rostaghi, M. and Azami, H. (2016). Dispersion entropy: A measure for time-series analysis. IEEE Signal Processing Letters 23, 610–614.
- Rényi, A. (1961). On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Vol. 4 (University of California Press); pp. 547–562.
- Schlemmer, A.; Berg, S.; Lilienkamp, T.; Luther, S. and Parlitz, U. (2018). Spatiotemporal permutation entropy as a measure for complexity of cardiac arrhythmia. Frontiers in Physics 6, 39.
- Schürmann, T. (2004). Bias analysis in entropy estimation. Journal of Physics A: Mathematical and General 37, L295.
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal 27, 379–423.
- Singh, H.; Misra, N.; Hnizdo, V.; Fedorowicz, A. and Demchuk, E. (2003). Nearest neighbor estimates of entropy. American journal of mathematical and management sciences 23, 301–321.
- Sippel, S.; Lange, H. and Gans, F. (2016), statcomp: Statistical Complexity and Information measures for time series analysis. R package version.
- Tian, Y.; Zhang, H.; Xu, W.; Zhang, H.; Yang, L.; Zheng, S. and Shi, Y. (2017). Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task. Frontiers in human neuroscience 11, 437.
- Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics 52, 479–487.
- Tsallis, C. (2009). Introduction to nonextensive statistical mechanics: approaching a complex world. Vol. 1 no. 1 (Springer).
- Vasicek, O. (1976). A test for normality based on sample entropy. Journal of the Royal Statistical Society Series B: Statistical Methodology 38, 54–59.
- Wang, X.; Si, S. and Li, Y. (2020). Multiscale diversity entropy: A novel dynamical measure for fault diagnosis of rotating machinery. IEEE Transactions on Industrial Informatics 17, 5419–5429.
- Wu, S.-D.; Wu, C.-W.; Lin, S.-G.; Wang, C.-C. and Lee, K.-Y. (2013). Time series analysis using composite multiscale entropy. Entropy 15, 1069–1084.
- Xue, Y. and Deng, Y. (2023). Tsallis extropy. Communications in Statistics-Theory and Methods 52, 751–762.
- Zahl, S. (1977). Jackknifing an index of diversity. Ecology 58, 907–913.
- Zhou, Q.; Shang, P. and Zhang, B. (2023). Using missing dispersion patterns to detect determinism and nonlinearity in time series data. Nonlinear Dynamics 111, 439–458.
- Zhu, J.; Bellanger, J.-J.; Shu, H. and Le Bouquin Jeannès, R. (2015). Contribution to transfer entropy estimation via the k-nearest-neighbors approach. Entropy 17, 4173–4201.
- Zunino, L.; Olivares, F.; Scholkmann, F. and Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A 381, 1883–1892.