References
- Barker, J. R. and Ross, M. H. (1999). An introduction to global warming. American Journal of Physics 67, 1216–1226.
- Bastiaansen, R.; Ashwin, P. and von der Heydt, A. S. (2023). Climate response and sensitivity: time scales and late tipping points. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 479, arXiv:2207.06110.
- Bender, F. A.; Engström, A.; Wood, R. and Charlson, R. J. (2017). Evaluation of hemispheric asymmetries in marine cloud radiative properties. Journal of Climate 30, 4131–4147.
- Berger, A. (1978). Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367.
- Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619.
- Cess, R. D. (1976). Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology. J. Atmos. Sci. 33, 1831–1843.
- Datseris, G. and Parlitz, U. (2022). Nonlinear dynamics. 1 Edition, Undergraduate Lecture Notes in Physics (Springer Nature, Cham, Switzerland).
- Datseris, G. and Stevens, B. (2021). Earth's Albedo and Its Symmetry. AGU Advances 2.
- Engström, A.; Bender, F. A.; Charlson, R. J. and Wood, R. (2015). The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the CMIP5 model ensemble. Geophysical Research Letters 42, 9571–9578.
- Etminan, M.; Myhre, G.; Highwood, E. J. and Shine, K. P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters 43, 12,614-12,623, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071930.
- Gaskell, D. E.; Huber, M.; O'Brien, C. L.; Inglis, G. N.; Acosta, R. P.; Poulsen, C. J. and Hull, P. M. (2022). The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal $\delta$18O over the past 95 million years. Proc. Natl. Acad. Sci. U. S. A. 119, e2111332119.
- Ghil, M. (1981). Energy-Balance Models: An Introduction. In: Climatic Variations and Variability: Facts and Theories (Springer Netherlands, Dordrecht); pp. 461–480.
- Koll, D. D. and Cronin, T. W. (2018). Earth's outgoing longwave radiation linear due to H 2 O greenhouse effect. Proceedings of the National Academy of Sciences 115, 10293–10298.
- Lohmann, J.; Castellana, D.; Ditlevsen, P. D. and Dijkstra, H. A. (2021). Abrupt climate change as a rate-dependent cascading tipping point. Earth Syst. Dyn. 12, 819–835.
- North, G. R.; Cahalan, R. F. and Coakley, J. A. (1981). Energy balance climate models. Reviews of Geophysics 19, 91.
- Osman, M. B.; Tierney, J. E.; Zhu, J.; Tardif, R.; Hakim, G. J.; King, J. and Poulsen, C. J. (2021). Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244.
- de Saedeleer, B.; Crucifix, M. and Wieczorek, S. (2013). Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study. Climate Dynamics 40, 273–294, arXiv:1109.6214.
- Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230.
- Södergren, A. H.; McDonald, A. J. and Bodeker, G. E. (2018). An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. Climate Dynamics 51, 1639–1658.
- Wikipedia contributors (2023). Tetens equation — Wikipedia, The Free Encyclopedia. [Online; accessed 6-February-2024].