References

[1]
P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke. Multiple coexisting attractors, basin boundaries and basic sets. Physica D: Nonlinear Phenomena 32, 296–305 (1988).
[2]
J. D. Skufca, J. A. Yorke and B. Eckhardt. Edge of chaos in a parallel shear flow. Physical review letters 96, 174101 (2006).
[3]
O. Mehling, R. Börner and V. Lucarini. Limits to predictability of the asymptotic state of the Atlantic Meridional Overturning Circulation in a conceptual climate model. Physica D: Nonlinear Phenomena 459, 134043 (2024).
[4]
T. M. Schneider, J. F. Gibson, M. Lagha, F. De Lillo and B. Eckhardt. Laminar-turbulent boundary in plane Couette flow. Physical Review E 78, 037301 (2008).
[5]
A. Wagemakers, A. Daza and M. A. Sanjuán. The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation 84, 105167 (2020).
[6]
V. Lucarini and T. Bódai. Edge states in the climate system: exploring global instabilities and critical transitions. Nonlinearity 30, R32 (2017).
[7]
R. Börner, R. Deeley, R. Römer, T. Grafke, V. Lucarini and U. Feudel. Saddle avoidance of noise-induced transitions in multiscale systems. Physical Review Research 6, L042053 (2024).
[8]
M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems (Springer, 1998).
[9]
R. Börner. Climate on the Edge: Metastability, Melancholia States and Critical Transitions of the Ocean Circulation. Ph.D. Thesis, University of Reading (2025).
[10]
T. Grafke and E. Vanden-Eijnden. Numerical computation of rare events via large deviation theory. Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 063118 (2019).
[11]
W. E, W. Ren and E. Vanden-Eijnden. Minimum action method for the study of rare events. Communications on Pure and Applied Mathematics 57, 637–656 (2004).
[12]
[13]
M. Heymann and E. Vanden-Eijnden. Pathways of Maximum Likelihood for Rare Events in Nonequilibrium Systems: Application to Nucleation in the Presence of Shear. Physical Review Letters 100, 140601 (2008).
[14]
T. Grafke, T. Schäfer and E. Vanden-Eijnden. Long Term Effects of Small Random Perturbations on Dynamical Systems: Theoretical and Computational Tools. In: Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, edited by R. Melnik, R. Makarov and J. Belair (Springer, 2017); pp. 17–55.