Parameter handling
Let nd!
be an ODEFunction returned by network_dynamics
, e.g.
nd! = network_dynamics(vertices!, edges!, graph)
then the behaviour of nd!
has the signature (dx, x, t, p)
and its behaviour changes with the type of parameters p
being passed.
- When
p
is an Array, a Dict, a struct... then the entire object is passed to eachVertexFunction
andEdgeFunction
. - When
p = (p_v, p_e)
is a Tuple of two values, then the first value will be passed to all vertices and the second to all edges. - If
p = (p_v_arr, p_e_arr)
is a Tuple of two Arrays with lengths corresponding to the number of nodes and number of edges respectively, then the edges or nodes receive only the parameter with the corresponding index. - If all nodes and/or edges have no internal parameters the value
nothing
may be passed. Usingnothing
instead of dummy parameters is usually faster, since then less data are copied.
Another option for specifying heterogeneous parameters is to make each VertexFunction
a callable struct with the parameters hardcoded as fields. This approach is used in PowerDynamics.jl. However it provides considerably less flexibility and interoperability with other packages.
For its greater speed and flexibility in modeling we recommend to use the tuple syntax.
Compatability with specific packages
Some other packages from the Julia ecosystem, e.g. DiffEqFlux, assume that the parameters p
are a subtype of AbstractArray
. Therefore they are not fully compatible with the tuple syntax.
However, wrapping the function in such a way that it accepts arrays of parameters that are later pasted into the tuple syntax sidesteps potential issues. Depending on the use case such a wrapper might look like this:
function nd_wrapper!(dx, x, p, t)
nd!(dx, x, (p, nothing), t)
end
At the moment we recommend this way for combining NetworkDynamics and DiffEqFlux.