Symbolic Indexing
Using SciML's SymblicIndexingInterface.jl
, ND.jl
provides lots of methods to access and change variables and Parameters.
Setup code to make following examples work
using NetworkDynamics
using Graphs
using OrdinaryDiffEqTsit5
using Plots
Provide Symbol Names
When construction component models, you can pass symbolic names using the sym
and psym
keywords.
function _edgef!(e, v_s, v_d, (K,), t)
e .= K * (v_s[1] .- v_d[1])
end
edgef = EdgeModel(;g=AntiSymmetric(_edgef!), outsym=[:flow], psym=[:K=>1])
EdgeModel :StaticEdgeM PureFeedForward()
├─ 0 states: []
├─ 1/1 outputs: src=[₋flow] dst=[flow]
└─ 1 param: [K=1]
Here we created a static diffusion edge with suitable variable and parameter names. Similarly, we define the diffusion vertex with symbolic names.
function _vertexf!(dv, v, esum, p, t)
dv[1] = esum[1]
end
vertexf = VertexModel(f=_vertexf!, g=1, sym=[:storage])
VertexModel :VertexM PureStateMap()
├─ 1 state: [storage]
└─ 1 output: [storage]
Fundamental Symblic Indices
The default types for this access are the types VIndex
, EIndex
, VPIndex
and EPIndex
. Each of those symbolic indices consists of 2 elements: a reference to the network componen and a reference to the symbol within that component. As such, VIndex(2, :x)
refers to variable with symbolic name :x
in vertex number 2. EPIndex(4, 2)
would refer to the second parameter of the edge component for the 4th edge.
Setup code to make following examples work
g = wheel_graph(5)
nw = Network(g, vertexf, edgef)
s = NWState(nw)
s.v[:,:storage] .= randn(5)
prob = ODEProblem(nw, uflat(s), (0,2), pflat(s))
sol = solve(prob, Tsit5())
Those fundamental indices can be used in a lot of scenarios. Most importantly you can use them to
sol(sol.t; idxs=VIndex(1, :storage)) # extract timeseries out ouf solution object
plot(sol; idxs=[VIndex(1, :storage), VIndex(5,:storage)]) # plot storage of two nodes
Generate Symbolic Indices
Often, you need many individual symbolic indices. For that there are the helper methods vidxs
, eidxs
, vpidxs
and epidxs
. With the help of those methods you can generate arrays of symbolic indices:
vidxs(nw, :, :storage) # get variable "storage" for all nodes
5-element Vector{VIndex}:
VIndex(1, :storage)
VIndex(2, :storage)
VIndex(3, :storage)
VIndex(4, :storage)
VIndex(5, :storage)
plot(sol; idxs=vidxs(nw, :, :storage))
NWState
and NWParameter
Objects
Internally, both state and parameters of a Network
are represented using flat arrays. To access the state or parameters of a network, you can use the NWState
and NWParameter
objects.
p = NWParameter(nw)
Parameter{Vector{Float64}} of Network (5 vertices, 8 edges)
├─ EPIndex(1, :K) => 1.0
├─ EPIndex(2, :K) => 1.0
├─ EPIndex(3, :K) => 1.0
├─ EPIndex(4, :K) => 1.0
├─ EPIndex(5, :K) => 1.0
├─ EPIndex(6, :K) => 1.0
├─ EPIndex(7, :K) => 1.0
└─ EPIndex(8, :K) => 1.0
creates a NWParameter
object for the network nw
. It essentially creates a new flat parameter array and fills it with the default parameter values define in the component. The parameters in the NWParameter
object can be accessed using the symbolic indices.
p[EPIndex(5, :K)] = 2.0 # change the parameter K of the 5th edge
Similarly, you can create a NWState
object for the network nw
using
s = NWState(nw)
NWState{Vector{Float64}} of Network (5 vertices, 8 edges)
├─ VIndex(1, :storage) => NaN
├─ VIndex(2, :storage) => NaN
├─ VIndex(3, :storage) => NaN
├─ VIndex(4, :storage) => NaN
└─ VIndex(5, :storage) => NaN
p = NWParameter([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
t = nothing
No default values were provided in the network components, so the state array is filled with NaN
s.
s[VIndex(:, :storage)] .= randn(5) # set the (initial) storage for alle nodes
NWState{Vector{Float64}} of Network (5 vertices, 8 edges)
├─ VIndex(1, :storage) => -0.7046430988024039
├─ VIndex(2, :storage) => -1.0731584246311014
├─ VIndex(3, :storage) => -1.4232994857677657
├─ VIndex(4, :storage) => 1.7100607360163618
└─ VIndex(5, :storage) => -0.5206177529629613
p = NWParameter([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
t = nothing
For both NWState
and NWParameter
objects, the there is a more convenient way to access the variables and parameters.
@assert s.v[1, :storage] == s[VIndex(1, :storage)] # s.v -> access vertex states
@assert s.e[1, :flow] == s[EIndex(1, :flow)] # s.e -> access edge states
@assert s.p.e[1,:K] == p[EPIndex(1, :K)] # s.p -> access parameters
The NWState
and NWParameter
objects are mutable, thus changing them will also change the underlying wrapped flat arrays. You can allways access the flat representations by calling uflat
and pflat
.
The NWState
and NWParameter
wrappers can be constructed from various objects. Fore example, within a callback you might construct p = NWParameter(integrator)
to then change the parameters of the network within the callback.
Observables
Sometimes, the "states" you're interested in aren't really states in the DAE sense but rather algebraic derivations from DAE states, parameters and time – in accordance with the naming in the SciML
-ecosystem those states are called Observables.
A prime example of Observables are edge/vertex-outputs, such as the flow
in the edge model defined above. It is also possible to define additional Observables manually by using the obssym
and obsf
keyword on the EdgeModel
/VertexModel
constructors. When building models using ModelingToolkit, the reduced algebraic states will be preserved as observables automatically.
Observables can be accessed like any other state, for example, the flows in the network don't show up in the state array but can be accessed in all the ways discussed above, for example
plot(sol; idxs=eidxs(nw, :, :flow))