Examples
Optimized Shooting Example
using PeriodicOrbits
using CairoMakie
using OrdinaryDiffEq
@inbounds function roessler_rule(u, p, t)
du1 = -u[2]-u[3]
du2 = u[1] + p[1]*u[2]
du3 = p[2] + u[3]*(u[1] - p[3])
return SVector{3}(du1, du2, du3)
end
function plot_result(res, ds; azimuth = 1.3 * pi, elevation = 0.3 * pi)
traj, t = trajectory(ds, res.T, res.points[1]; Dt = 0.01)
fig = Figure()
ax = Axis3(fig[1,1], azimuth = azimuth, elevation=elevation)
lines!(ax, traj[:, 1], traj[:, 2], traj[:, 3], color = :blue, linewidth=1.7)
scatter!(ax, res.points[1])
return fig
end
ig = InitialGuess(SVector(2.0, 5.0, 10.0), 10.2)
OSalg = OptimizedShooting(Δt=0.01, n=3)
ds = CoupledODEs(roessler_rule, [1.0, -2.0, 0.1], [0.15, 0.2, 3.5]; diffeq=(abstol=1e-10, reltol=1e-10))
res = periodic_orbit(ds, OSalg, ig)
plot_result(res, ds; azimuth = 1.3pi, elevation=0.1pi)

SchmelcherDiakonos example
For example, let's find the fixed points of the Standard map of period 2, 3, 4, 5, 6 and 8. We will use all permutations for the signs
but only one for the inds
. We will also only use one λ
value, and a 11×11 density of initial conditions.
First, initialize everything
using PeriodicOrbits
function standardmap_rule(x, k, n)
theta = x[1]; p = x[2]
p += k[1]*sin(theta)
theta += p
return SVector(mod2pi(theta), mod2pi(p))
end
standardmap = DeterministicIteratedMap(standardmap_rule, rand(2), [1.0])
xs = range(0, stop = 2π, length = 11); ys = copy(xs)
ics = InitialGuess[InitialGuess(SVector{2}(x,y), nothing) for x in xs for y in ys]
# All permutations of [±1, ±1]:
signss = lambdaperms(2)[2] # second entry are the signs
# I know from personal research I only need this `inds`:
indss = [[1,2]] # <- must be container of vectors!
λs = [0.005] # <- vector of numbers
periods = [2, 3, 4, 5, 6, 8]
ALLFP = Vector{PeriodicOrbit}[]
standardmap
2-dimensional DeterministicIteratedMap
deterministic: true
discrete time: true
in-place: false
dynamic rule: standardmap_rule
parameters: [1.0]
time: 0
state: [0.08136624002163018, 0.8696656006054712]
Then, do the necessary computations for all periods
for o in periods
SDalg = SchmelcherDiakonos(o=o, λs=λs, indss=indss, signss=signss, maxiters=30000)
FP = periodic_orbits(standardmap, SDalg, ics)
FP = uniquepos(FP; atol=1e-5)
push!(ALLFP, FP)
end
Plot the phase space of the standard map
using CairoMakie
iters = 1000
dataset = trajectory(standardmap, iters)[1]
for x in xs
for y in ys
append!(dataset, trajectory(standardmap, iters, [x, y])[1])
end
end
fig = Figure()
ax = Axis(fig[1,1]; xlabel = L"\theta", ylabel = L"p",
limits = ((xs[1],xs[end]), (xs[1],xs[end]))
)
scatter!(ax, dataset[:, 1], dataset[:, 2]; markersize = 1, color = "black")
fig

and finally, plot the fixed points
markers = [:diamond, :utriangle, :rect, :pentagon, :hexagon, :circle]
for i in eachindex(ALLFP)
FP = ALLFP[i]
o = periods[i]
points = Tuple{Float64, Float64}[]
for po in FP
append!(points, [Tuple(x) for x in po.points])
end
println(points)
scatter!(ax, points; marker=markers[i], color = Cycled(i),
markersize = 30 - 2i, strokecolor = "grey", strokewidth = 1, label = "period $o"
)
end
axislegend(ax)
fig

Okay, this output is great, and we can tell that it is correct because:
- Fixed points of period $n$ are also fixed points of period $2n, 3n, 4n, ...$
- Besides fixed points of previous periods, original fixed points of period $n$ come in (possible multiples of) $2n$-sized pairs (see e.g. period 5). This is a direct consequence of the Poincaré–Birkhoff theorem.
DavidchackLai example
Logistic map example
The idea of periodic orbits can be illustrated easily on 1D maps. Finding all periodic orbits of period $n$ is equivalent to finding all points $x$ such that $f^{n}(x)=x$, where $f^{n}$ is $n$-th composition of $f$. Hence, solving $f^{n}(x)-x=0$ yields such points. However, this is often impossible analytically. Let's see how DavidchackLai
deals with it:
First let's start with finding periodic orbits with period $1$ to $9$ for the logistic map with parameter $3.72$.
using PeriodicOrbits
using CairoMakie
logistic_rule(x, p, n) = @inbounds SVector(p[1]*x[1]*(1 - x[1]))
ds = DeterministicIteratedMap(logistic_rule, SVector(0.4), [3.72])
seeds = InitialGuess[InitialGuess(SVector(i), nothing) for i in LinRange(0.0, 1.0, 10)]
alg = DavidchackLai(n=9, m=6, abstol=1e-6, disttol=1e-12)
output = periodic_orbits(ds, alg, seeds)
output = uniquepos(output);
21-element Vector{PeriodicOrbit{1, Float64, Int64}}:
PeriodicOrbit{1, Float64, Int64}([0.9157520118590328], 6, missing)
PeriodicOrbit{1, Float64, Int64}([0.8672212001324514], 6, missing)
PeriodicOrbit{1, Float64, Int64}([0.926615939521572], 7, missing)
PeriodicOrbit{1, Float64, Int64}([0.9253694005081411], 7, missing)
PeriodicOrbit{1, Float64, Int64}([0.8821874972430711], 8, missing)
PeriodicOrbit{1, Float64, Int64}([0.6356815832652796], 8, missing)
PeriodicOrbit{1, Float64, Int64}([0.8183371571046828], 8, missing)
PeriodicOrbit{1, Float64, Int64}([0.5808155232915646], 8, missing)
PeriodicOrbit{1, Float64, Int64}([0.9084942279404515], 8, missing)
PeriodicOrbit{1, Float64, Int64}([0.8950482855441151], 9, missing)
⋮
PeriodicOrbit{1, Float64, Int64}([0.9228234528852715], 9, missing)
PeriodicOrbit{1, Float64, Int64}([0.0], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.7311827956989247], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.7859469404443792], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.8198226708978105], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.8876079095344168], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.9171895253304865], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.9204951873594017], 10, missing)
PeriodicOrbit{1, Float64, Int64}([0.6834664578174998], 10, missing)
Let's plot the periodic orbits of period $6$.
function ydata(ds, period, xdata)
ydata = typeof(current_state(ds)[1])[]
for x in xdata
reinit!(ds, x)
step!(ds, period)
push!(ydata, current_state(ds)[1])
end
return ydata
end
fig = Figure()
x = LinRange(0.0, 1.0, 1000)
period = 6
period6 = filter(po -> po.T == period, output)
fpsx = vcat([vec(po.points) for po in period6]...)
y = ydata(ds, period, [SVector(x0) for x0 in x])
fpsy = ydata(ds, period, fpsx)
axis = Axis(fig[1, 1])
axis.title = "Period $period"
lines!(axis, x, x, color=:black, linewidth=0.8)
lines!(axis, x, y, color = :blue, linewidth=1.7)
scatter!(axis, [i[1] for i in fpsx], fpsy, color = :red, markersize=15)
fig

Points $x$ which fulfill $f^{n}(x)=x$ can be interpreted as an intersection of the function $f^{n}(x)$ and the identity function $y=x$. Our result is correct because all the points of the intersection between the identity function and the sixth iterate of the logistic map were found.
Henon Map example
Let's try to use DavidchackLai
in higher dimension. We will try to detect all periodic points of Henon map of period 1
to 12
.
using PeriodicOrbits, CairoMakie
using LinearAlgebra: norm
function henon(u0=zeros(2); a = 1.4, b = 0.3)
return DeterministicIteratedMap(henon_rule, u0, [a,b])
end
henon_rule(x, p, n) = SVector{2}(1.0 - p[1]*x[1]^2 + x[2], p[2]*x[1])
ds = henon()
xs = LinRange(-3.0, 3.0, 10)
ys = LinRange(-10.0, 10.0, 10)
seeds = InitialGuess[InitialGuess(SVector{2}(x,y), nothing) for x in xs for y in ys]
n = 12
m = 6
alg = DavidchackLai(n=n, m=m, abstol=1e-7, disttol=1e-10)
output = periodic_orbits(ds, alg, seeds)
output = uniquepos(output)
output = [minimal_period(ds, po) for po in output]
markers = [:circle, :rect, :diamond, :utriangle, :dtriangle, :ltriangle, :rtriangle, :pentagon, :hexagon, :cross, :xcross, :star4]
fig = Figure(fontsize=18)
ax = Axis(fig[1,1])
for p = 12:-1:1
pos = filter(x->x.T == p, output)
for (index, po) in enumerate(pos)
scatter!(ax, vec(po.points), markersize=10, color=Cycled(p), label = "T = $p", marker=markers[p])
end
end
axislegend(ax, merge=true, unique=true, position=(0.0, 0.55))
fig

The theory of periodic orbits states that UPOs form sort of a skeleton of the chaotic attractor. Our results supports this claim since it closely resembles the Henon attractor.
Note that in this case parameter m
has to be set to at least 6
. Otherwise, the algorithm fails to detect orbits of higher periods correctly.