Examples

Optimized Shooting Example

using PeriodicOrbits
using CairoMakie
using OrdinaryDiffEq

@inbounds function roessler_rule(u, p, t)
    du1 = -u[2]-u[3]
    du2 = u[1] + p[1]*u[2]
    du3 = p[2] + u[3]*(u[1] - p[3])
    return SVector{3}(du1, du2, du3)
end

function plot_result(res, ds; azimuth = 1.3 * pi, elevation = 0.3 * pi)
    traj, t = trajectory(ds, res.T, res.points[1]; Dt = 0.01)
    fig = Figure()
    ax = Axis3(fig[1,1], azimuth = azimuth, elevation=elevation)
    lines!(ax, traj[:, 1], traj[:, 2], traj[:, 3], color = :blue, linewidth=1.7)
    scatter!(ax, res.points[1])
    return fig
end

ig = InitialGuess(SVector(2.0, 5.0, 10.0), 10.2)
OSalg = OptimizedShooting(Δt=0.01, n=3)
ds = CoupledODEs(roessler_rule, [1.0, -2.0, 0.1], [0.15, 0.2, 3.5]; diffeq=(abstol=1e-10, reltol=1e-10))
res = periodic_orbit(ds, OSalg, ig)
plot_result(res, ds; azimuth = 1.3pi, elevation=0.1pi)
Example block output

SchmelcherDiakonos example

For example, let's find the fixed points of the Standard map of period 2, 3, 4, 5, 6 and 8. We will use all permutations for the signs but only one for the inds. We will also only use one λ value, and a 11×11 density of initial conditions.

First, initialize everything

using PeriodicOrbits

function standardmap_rule(x, k, n)
    theta = x[1]; p = x[2]
    p += k[1]*sin(theta)
    theta += p
    return SVector(mod2pi(theta), mod2pi(p))
end

standardmap = DeterministicIteratedMap(standardmap_rule, rand(2), [1.0])
xs = range(0, stop = 2π, length = 11); ys = copy(xs)
ics = InitialGuess[InitialGuess(SVector{2}(x,y), nothing) for x in xs for y in ys]

# All permutations of [±1, ±1]:
signss = lambdaperms(2)[2] # second entry are the signs

# I know from personal research I only need this `inds`:
indss = [[1,2]] # <- must be container of vectors!

λs = [0.005] # <- vector of numbers

periods = [2, 3, 4, 5, 6, 8]
ALLFP = Vector{PeriodicOrbit}[]

standardmap
2-dimensional DeterministicIteratedMap
 deterministic: true
 discrete time: true
 in-place:      false
 dynamic rule:  standardmap_rule
 parameters:    [1.0]
 time:          0
 state:         [0.08136624002163018, 0.8696656006054712]

Then, do the necessary computations for all periods

for o in periods
    SDalg = SchmelcherDiakonos(o=o, λs=λs, indss=indss, signss=signss, maxiters=30000)
    FP = periodic_orbits(standardmap, SDalg, ics)
    FP = uniquepos(FP; atol=1e-5)
    push!(ALLFP, FP)
end

Plot the phase space of the standard map

using CairoMakie
iters = 1000
dataset = trajectory(standardmap, iters)[1]
for x in xs
    for y in ys
        append!(dataset, trajectory(standardmap, iters, [x, y])[1])
    end
end

fig = Figure()
ax = Axis(fig[1,1]; xlabel = L"\theta", ylabel = L"p",
    limits = ((xs[1],xs[end]), (xs[1],xs[end]))
)
scatter!(ax, dataset[:, 1], dataset[:, 2]; markersize = 1, color = "black")
fig
Example block output

and finally, plot the fixed points

markers = [:diamond, :utriangle, :rect, :pentagon, :hexagon, :circle]

for i in eachindex(ALLFP)
    FP = ALLFP[i]
    o = periods[i]
    points = Tuple{Float64, Float64}[]
    for po in FP
        append!(points, [Tuple(x) for x in po.points])
    end
    println(points)
    scatter!(ax, points; marker=markers[i], color = Cycled(i),
        markersize = 30 - 2i, strokecolor = "grey", strokewidth = 1, label = "period $o"
    )
end
axislegend(ax)
fig
Example block output

Okay, this output is great, and we can tell that it is correct because:

  1. Fixed points of period $n$ are also fixed points of period $2n, 3n, 4n, ...$
  2. Besides fixed points of previous periods, original fixed points of period $n$ come in (possible multiples of) $2n$-sized pairs (see e.g. period 5). This is a direct consequence of the Poincaré–Birkhoff theorem.

DavidchackLai example

Logistic map example

The idea of periodic orbits can be illustrated easily on 1D maps. Finding all periodic orbits of period $n$ is equivalent to finding all points $x$ such that $f^{n}(x)=x$, where $f^{n}$ is $n$-th composition of $f$. Hence, solving $f^{n}(x)-x=0$ yields such points. However, this is often impossible analytically. Let's see how DavidchackLai deals with it:

First let's start with finding periodic orbits with period $1$ to $9$ for the logistic map with parameter $3.72$.

using PeriodicOrbits
using CairoMakie

logistic_rule(x, p, n) = @inbounds SVector(p[1]*x[1]*(1 - x[1]))
ds = DeterministicIteratedMap(logistic_rule, SVector(0.4), [3.72])
seeds = InitialGuess[InitialGuess(SVector(i), nothing) for i in LinRange(0.0, 1.0, 10)]
alg = DavidchackLai(n=9, m=6, abstol=1e-6, disttol=1e-12)
output = periodic_orbits(ds, alg, seeds)
output = uniquepos(output);
21-element Vector{PeriodicOrbit{1, Float64, Int64}}:
 PeriodicOrbit{1, Float64, Int64}([0.9157520118590328], 6, missing)
 PeriodicOrbit{1, Float64, Int64}([0.8672212001324514], 6, missing)
 PeriodicOrbit{1, Float64, Int64}([0.926615939521572], 7, missing)
 PeriodicOrbit{1, Float64, Int64}([0.9253694005081411], 7, missing)
 PeriodicOrbit{1, Float64, Int64}([0.8821874972430711], 8, missing)
 PeriodicOrbit{1, Float64, Int64}([0.6356815832652796], 8, missing)
 PeriodicOrbit{1, Float64, Int64}([0.8183371571046828], 8, missing)
 PeriodicOrbit{1, Float64, Int64}([0.5808155232915646], 8, missing)
 PeriodicOrbit{1, Float64, Int64}([0.9084942279404515], 8, missing)
 PeriodicOrbit{1, Float64, Int64}([0.8950482855441151], 9, missing)
 ⋮
 PeriodicOrbit{1, Float64, Int64}([0.9228234528852715], 9, missing)
 PeriodicOrbit{1, Float64, Int64}([0.0], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.7311827956989247], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.7859469404443792], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.8198226708978105], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.8876079095344168], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.9171895253304865], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.9204951873594017], 10, missing)
 PeriodicOrbit{1, Float64, Int64}([0.6834664578174998], 10, missing)

Let's plot the periodic orbits of period $6$.

function ydata(ds, period, xdata)
    ydata = typeof(current_state(ds)[1])[]
    for x in xdata
        reinit!(ds, x)
        step!(ds, period)
        push!(ydata, current_state(ds)[1])
    end
    return ydata
end

fig = Figure()
x = LinRange(0.0, 1.0, 1000)
period = 6
period6 = filter(po -> po.T == period, output)
fpsx = vcat([vec(po.points) for po in period6]...)
y = ydata(ds, period, [SVector(x0) for x0 in x])
fpsy = ydata(ds, period, fpsx)
axis = Axis(fig[1, 1])
axis.title = "Period $period"
lines!(axis, x, x, color=:black, linewidth=0.8)
lines!(axis, x, y, color = :blue, linewidth=1.7)
scatter!(axis, [i[1] for i in fpsx], fpsy, color = :red, markersize=15)
fig
Example block output

Points $x$ which fulfill $f^{n}(x)=x$ can be interpreted as an intersection of the function $f^{n}(x)$ and the identity function $y=x$. Our result is correct because all the points of the intersection between the identity function and the sixth iterate of the logistic map were found.

Henon Map example

Let's try to use DavidchackLai in higher dimension. We will try to detect all periodic points of Henon map of period 1 to 12.

using PeriodicOrbits, CairoMakie
using LinearAlgebra: norm

function henon(u0=zeros(2); a = 1.4, b = 0.3)
    return DeterministicIteratedMap(henon_rule, u0, [a,b])
end
henon_rule(x, p, n) = SVector{2}(1.0 - p[1]*x[1]^2 + x[2], p[2]*x[1])

ds = henon()
xs = LinRange(-3.0, 3.0, 10)
ys = LinRange(-10.0, 10.0, 10)
seeds = InitialGuess[InitialGuess(SVector{2}(x,y), nothing) for x in xs for y in ys]
n = 12
m = 6
alg = DavidchackLai(n=n, m=m, abstol=1e-7, disttol=1e-10)
output = periodic_orbits(ds, alg, seeds)
output = uniquepos(output)
output = [minimal_period(ds, po) for po in output]

markers = [:circle, :rect, :diamond, :utriangle, :dtriangle, :ltriangle, :rtriangle, :pentagon, :hexagon, :cross, :xcross, :star4]
fig = Figure(fontsize=18)
ax = Axis(fig[1,1])
for p = 12:-1:1
    pos = filter(x->x.T == p, output)
    for (index, po) in enumerate(pos)
        scatter!(ax, vec(po.points), markersize=10, color=Cycled(p), label = "T = $p", marker=markers[p])
    end
end
axislegend(ax, merge=true, unique=true, position=(0.0, 0.55))
fig
Example block output

The theory of periodic orbits states that UPOs form sort of a skeleton of the chaotic attractor. Our results supports this claim since it closely resembles the Henon attractor.

Note that in this case parameter m has to be set to at least 6. Otherwise, the algorithm fails to detect orbits of higher periods correctly.